
Java Programming
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2023 Arthur Hoskey. All 
rights reserved.



Today’s Lecture

 JavaFX Graphics
◦ Animations

© 2023 Arthur Hoskey. All 
rights reserved.



Animations

Animations in JavaFX

 Allows us to change property values over time.

 JavaFX has prebuilt classes that simplify 
animation.

 We will cover the following types of animations:
◦ Transition animations

◦ Timeline animations

© 2023 Arthur Hoskey. All 
rights reserved.



Transition

Transition

 Transition – Change a property value smoothly over a time 
period.

 The example below is a fill transition.

 It changes the color from gray to blue over a time period. 
(changes the fill color ).

© 2023 Arthur Hoskey. All 
rights reserved.

Color gradually changes from gray to blue 

over a defined period of time



Transition - Cycle

Transition – Cycle

 One direction of the animation.

 Animations can have multiple cycles.

 Note: Auto reverse is false in this example (more on auto reverse 
on upcoming slides).

© 2023 Arthur Hoskey. All 
rights reserved.

1 Cycle

2 Cycles

3 Cycles

1 cycle from 

gray to blue
1 cycle from 

gray to blue

1 cycle from 

gray to blue
1 cycle from 

gray to blue

1 cycle from 

gray to blue

Each cycle goes from 

the start value to the end 

value during 1 cycle 

(auto reverse is false 

here)



Transition - Duration

Transition – Duration

 The time it takes for one cycle of the animation.

 For example, if the duration is set to 2 seconds, then it will 
take 2 seconds to go from gray to blue.

© 2023 Arthur Hoskey. All 
rights reserved.

Takes 2 seconds to go from gray to blue

Duration = 2 seconds



Transition – Auto Reverse

Transition – Auto Reverse

 Auto reverse will make the animation go in the opposite 
direction during the next cycle.

© 2023 Arthur Hoskey. All 
rights reserved.

1 Cycle

2 Cycles

3 Cycles

1 cycle from 

gray to blue
1 cycle from 

blue to gray

1 cycle from 

gray to blue

1 cycle from 

gray to blue
1 cycle from 

blue to gray



Transition – Example

Transition – Example

 Duration = 2 seconds

 Cycles = 3

 Auto Reverse = true

 Total animation time will be 6 seconds (3*2=6).

© 2023 Arthur Hoskey. All 
rights reserved.

3 Cycles

2 seconds 2 seconds 

(auto 

reverse)

2 seconds 

(auto 

reverse)

Total for whole 

animation is 6 seconds



Transition Animations

Transition Animations in JavaFX

 Prebuilt classes for specific property transition. 
For example:
◦ FillTransition

◦ StrokeTransition

◦ FadeTransition

◦ RotateTransition

◦ TranslateTransition

◦ PathTransition (moves object along a path)

◦ ScaleTransition (changes object size)

 Classes to run multiple transitions
◦ ParallelTransition (animations done at same time)

◦ SequentialTransition (animation done one after another)

© 2023 Arthur Hoskey. All 
rights reserved.



FillTransition

FillTransition (StrokeTransition is similar)

 Changes the fill color to a new color over time.

 Note: Use StrokeTransition class to change the stroke.
@FXML

private Rectangle rectangle;

FillTransition fillTransition = 

new FillTransition(Duration.seconds(2), rectangle);

fillTransition.setToValue(Color.BLUE);

fillTransition.setCycleCount(4);

fillTransition.setAutoReverse(true);

fillTransition.play();

© 2023 Arthur Hoskey. All 
rights reserved.

Duration of one 

transition cycle 

will be 2 seconds 

Change color to BLUE

Number of times to do the 

cycle (4 times in this case)

The even cycles will transition 

back to the original color. 

Cycle 1 goes to BLUE

Cycle 2 goes to original

Cycle 3 goes to BLUE

Cycle 4 goes to original

Do the transition on 

the rectangle instance



FillTransition - Cycles

Fill Transition - Cycles

 A cycle goes in one direction.

 In this code the animation goes from red to blue once. It takes 2 
seconds for it to happen.

// Assume starting color is red

FillTransition fillTransition = new FillTransition(Duration.seconds(2), rectangle);

fillTransition.setToValue(Color.BLUE);

fillTransition.setCycleCount(1);

 You can do more than one cycle. The following code does two 
cycles. It will go from red→blue over the course of 2 seconds and 
then go from red→blue again taking another 2 seconds. On the 

second cycle there is no transition back to red, it immediately 
goes to red and transitions to blue again. The total duration will 
end up being 4 seconds.

FillTransition fillTransition = new FillTransition(Duration.seconds(2), rectangle);

fillTransition.setToValue(Color.BLUE);

fillTransition.setCycleCount(2);

© 2023 Arthur Hoskey. All 
rights reserved.



Fill Transition - Auto Reverse

Fill Transition - Auto Reverse
 Auto reverse causes the animation to go back to its starting value.

 The first cycle will go from red to blue taking 2 seconds. The second cycle 
will go from blue to red taking two seconds. The total duration will be 4 
seconds and the fill color will be red when it is done (the original color).

// Assume starting color is red

FillTransition fillTransition = new FillTransition(Duration.seconds(2), rectangle);

fillTransition.setToValue(Color.BLUE);

fillTransition.setCycleCount(2);

fillTransition.setAutoReverse(true);

 Note: The cycle count needs to be greater than 1 to see the effect of auto 
reverse. For example, in the following code it does not go back to the 
original color because the cycle count is 1.

FillTransition fillTransition = new FillTransition(Duration.seconds(2), rectangle);

fillTransition.setToValue(Color.BLUE);

fillTransition.setCycleCount(1); // Cycle count too low for auto reverse

fillTransition.setAutoReverse(true);

© 2023 Arthur Hoskey. All 
rights reserved.



FadeTransition

FadeTransition

 Changes the opacity of the shape (opaque vs transparent).

 Opaque - Cannot see through the object.

 Transparent – Can see through the object.

 For example:

FadeTransition fadeTransition = 

new FadeTransition(Duration.seconds(2), rectangle);

fadeTransition.setFromValue(1.0);

fadeTransition.setToValue(0.0);

fadeTransition.setCycleCount(2);

fadeTransition.setAutoReverse(true);

fadeTransition.play();

© 2023 Arthur Hoskey. All 
rights reserved.

Starting as opaque (1.0 means 

you CANNOT see through object)

Ending as transparent (0.0 means 

you CAN see through object)



Handling Multiple Transitions

 Now on to handling multiple transitions…

© 2023 Arthur Hoskey. All 
rights reserved.



Handling Multiple Transitions

Handling Multiple Transitions

 JavaFX allows you can coordinate multiple transitions.

 ParallelTransition – Do multiple transitions simultaneously.

 SequentialTransition – Do one transition after another in 
sequence.

© 2023 Arthur Hoskey. All 
rights reserved.



ParallelTransition

ParallelTransition

 Do multiple transitions simultaneously (in parallel).

 For example:

ParallelTransition parallelTransition = new

ParallelTransition(fillTransition, fadeTransition);

parallelTransition.play();

OR

ParallelTransition parallelTransition = new ParallelTransition();

parallelTransition.getChildren().add(fillTransition);

parallelTransition.getChildren().add(fadeTransition);

parallelTransition.play();

© 2023 Arthur Hoskey. All 
rights reserved.

Run the parallel transition. 

IMPORTANT!!! Make sure to NOT call 

play on the fill or fade transitions. The 

parallel transition will call it for both.

Simultaneously run the fill and 

fade transitions (you can add 

more to the list if you want)

You can also add 

transitions after calling new



SequentialTransition

SequentialTransition

 Do multiple transitions one after another (in sequence). 

 Each transition will run to completion and then the next will 
start.

SequentialTransition sequentialTransition = new 
SequentialTransition(fillTransition, fadeTransition, strokeTransition);

sequentialTransition.play();

© 2023 Arthur Hoskey. All 
rights reserved.

Run the transitions one after another

IMPORTANT!!! Make sure to NOT call 

play on the fill or fade transitions. 

The parallel transition will call it for 

both.

Run the fill, fade, and stroke 

transitions in sequence (you can 

add more to the list if you want)



Running a Method After an 
Animation Finishes

Running a Method After an Animation Finishes

 Use the setOnFinished method.

 Here is an example using a ParallelTransition
(setOnFinished works on any Transition type):

ParallelTransition parallelTransition = new ParallelTransition();

// other code to setup the transition here…

parallelTransition.setOnFinished(e -> someMethod());

parallelTransition.play();

 The someMethod() method will run after the animation finishes.

 Note: The -> is the lambda operator. If you do not understand lambda, all 
you need to do is replace someMethod with the name of whatever method 
you want to run.

© 2023 Arthur Hoskey. All 
rights reserved.



Timeline Animations

 Now on to TimeLine animations…

© 2023 Arthur Hoskey. All 
rights reserved.



Timeline Animations

Timeline Animations in JavaFX
 Timeline animations can be used on any Node property 

that can be changed.

 Gives more control and has more options than transitions.

 Uses the following classes:
◦ KeyValue – Defines a property and target value for that property.

◦ KeyFrame – Holds a set of KeyValues. It sets a time when the 
KeyValues should reach their target values.

◦ Timeline – Holds a set of KeyFrames. It will play the animation. It 
controls each of its KeyFrames reaching moving towards their target 
values in their respective times.

© 2023 Arthur Hoskey. All 
rights reserved.



Timeline Animations

Timeline Animations

KeyValue keyValue1 = new KeyValue(circle.translateXProperty(), 100);

KeyFrame keyFrame1 = new KeyFrame(Duration.seconds(1), keyValue1);

KeyValue keyValue2 = new KeyValue(circle.translateYProperty(), 200);

KeyFrame keyFrame2 = new KeyFrame(Duration.seconds(2), keyValue2);

Timeline timeline1 = new Timeline(keyFrame1, keyFrame2);

timeline1.play();

© 2023 Arthur Hoskey. All 
rights reserved.

TimeLine

KeyFrame 
Duration: 1 seconds

KeyValue
Target: translateX

EndValue: 100

KeyFrame
Duration: 2 seconds

KeyValue
Target: translateY

EndValue: 200

Timeline will run all of 

its KeyFrames 

simultaneously. In this 

case keyFrame2 will 

take longer to finish 

than keyFrame1 (two 

seconds instead of one).

Use circle's translateX property

Setup 

keyFrame1

Setup 

keyFrame2

Add KeyFrames 

to Timeline

Target is 100

Run animation



Sequential Timeline Animation

Sequential Timeline Animation
 You can run animations sequentially if you want.

 Use a SequentialTransition to play the animation (instead of 
calling play on the Timeline).

KeyValue keyValue1 = new KeyValue(circle.translateXProperty(), 100);

KeyFrame keyFrame1 = new KeyFrame(Duration.seconds(1), keyValue1);

Timeline timeline1 = new Timeline(keyFrame1);

KeyValue keyValue2 = new KeyValue(circle.translateYProperty(), 200);

KeyFrame keyFrame2 = new KeyFrame(Duration.seconds(2), keyValue2);

Timeline timeline2 = new Timeline(keyFrame2);

SequentialTransition sequentialTransition = 

new SequentialTransition(timeline1, timeline2);

sequentialTransition.play();

© 2023 Arthur Hoskey. All 
rights reserved.

Put keyFrame1 in its own Timeline 

(do not call play on Timeline)

Add Timelines to a 

SequentialTransition

Put keyFrame2 in its own Timeline 

(do not call play on Timeline)

Runs animations. When timeline1 

completes it will run timeline2



End of Slides
© 2023 Arthur Hoskey. All 
rights reserved.


	Slide 1: Java Programming
	Slide 2: Today’s Lecture
	Slide 3: Animations
	Slide 4: Transition
	Slide 5: Transition - Cycle
	Slide 6: Transition - Duration
	Slide 7: Transition – Auto Reverse
	Slide 8: Transition – Example
	Slide 9: Transition Animations
	Slide 10: FillTransition
	Slide 11: FillTransition - Cycles
	Slide 12: Fill Transition - Auto Reverse
	Slide 13: FadeTransition
	Slide 14: Handling Multiple Transitions
	Slide 15: Handling Multiple Transitions
	Slide 16: ParallelTransition
	Slide 17: SequentialTransition
	Slide 18: Running a Method After an Animation Finishes
	Slide 19: Timeline Animations
	Slide 20: Timeline Animations
	Slide 21: Timeline Animations
	Slide 22: Sequential Timeline Animation
	Slide 23: End of Slides

